Antimicrobial Treasures: Endophytic Fungi in Medicinal Plants

Authors

  • Ubaydullaeva Sh. X Institute of Fundamental and Applied Research “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers”, National Research University, 39 Kori Niyoziy Str., Tashkent 100000, Uzbekistan

DOI:

https://doi.org/10.51699/wjau.v2i9.100

Keywords:

Endophytic fungi, medicanal plants, antimicrobial activity

Abstract

Endophytic fungi residing within medicinal plants have garnered significant attention as potential sources of novel antimicrobial secondary metabolites. This review paper explores the diverse and intricate relationship between endophytic fungi and their host medicinal plants, focusing on their capacity to produce bioactive compounds with antimicrobial properties. The interaction between endophytes and their host plants contributes to the synthesis of a wide array of secondary metabolites, many of which exhibit promising antimicrobial activities against various pathogens, including bacteria, fungi, and viruses. Through an extensive survey of the current literature, this review highlights the methodologies employed for the isolation, identification, and characterization of endophytic fungi, as well as the strategies used to extract, purify, and assess the antimicrobial potential of their secondary metabolites. Additionally, the mechanisms underlying the biosynthesis of these bioactive compounds are discussed, shedding light on the ecological and evolutionary aspects of the endophyte-host relationship. The paper also examines the challenges and prospects associated with harnessing endophytic fungi-derived antimicrobial secondary metabolites for pharmaceutical applications. By elucidating the multifaceted roles of endophytic fungi in contributing to the health and defense mechanisms of medicinal plants, this review underscores the importance of continued research in this field for the sustainable development of innovative antimicrobial agents.

References

Pešić M. (2015). Development of natural product drugs in a sustainable manner. Brief for United Nations Global Sustainable Development Report 2015.Available,at: https://sustainabledevelopment.un.org/content/documents/6544118_Pesic_Development%20of%20natural%20product%20drugs%20in%20a%20%20sustainable%20manner.pdf. (Accessed August 15, 2018).

Bauer, Armin & Brönstrup, Mark. (2013). Industrial natural product chemistry for drug discovery and development. Natural product reports. 31. 10.1039/c3np70058e.

Ferdosh, S. Ethnobotanical Review of Selected Medicinal Plants in Guam for the Treatment of Urinary Tract Ailments and Their Pharmacological Properties. Sci. Pharm. 2023, 91, 43. https://doi.org/10.3390/scipharm91030043

Qi, X., Wang, E., Xing, M., Zhao, W., and Chen, X. (2012). Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J. Microbiol. Biotechnol. 28, 2257–2265. doi: 10.1007/s11274-012-1033-2

Priyanka S.R., Jinal H.N., Amaresan N. Diversity and antimicrobial activity of plant associated bacteria from selected medicinal plants in Kutch, Dhinodhar hill, Gujarat. Nat. Acad. Sci. Lett. 2018;41(3):137–139.

Gouda S, Das G, Sen SK, Shin H-S and Patra JK (2016) Endophytes: A Treasure House of Bioactive Compounds of Medicinal Importance. Front. Microbiol. 7:1538. doi: 10.3389/fmicb.2016.01538

Caruso, D.J.; Palombo, E.A.; Moulton, S.E.; Zaferanloo, B. Exploring the promise of endophytic fungi: A review of novel antimicrobial compounds. Microorganisms 2022,

Deshmukh, S.K.; Gupta, M.K.; Prakash, V.; Saxena, S. Endophytic fungi: A source of potential antifungal compounds. J. Fungi 2018, Adeleke,

Eshboev, F.; Karakozova, M.; Abdurakhmanov, J.; Bobakulov, K.; Dolimov, K.; Abdurashidov, A.; Baymirzaev, A.; Makhnyov, A.; Terenteva, E.; Sasmakov, S.; et al. Antimicrobial and Cytotoxic Activities of the Secondary Metabolites of Endophytic Fungi Isolated from the Medicinal Plant Hyssopus officinalis. Antibiotics 2023, 12, 1201. https://doi.org/10.3390/antibiotics12071201

Oktavia, L.; Krishna, V.S.; Rekha, E.M.; Fathoni, A.; Sriram, D.; Agusta, A. Anti-mycobacterial activity of two natural Bisanthraquinones:(+)-1, 10-Bislunatin and (+)-2, 20-Epicytoskyrin A. In IOP Conference Series: Earth and Environmental Science. IOP Publ. 2020, 591, 12025.

Vinale F, Nicoletti R, Lacatena F, Marra R, Sacco A, Lombardi N, d'Errico G, Digilio MC, Lorito M, Woo SL. Secondary metabolites from the endophytic fungus Talaromyces pinophilus. Nat Prod Res. 2017 Aug;31(15):1778-1785. doi: 10.1080/14786419.2017.1290624. Epub 2017 Feb 28. PMID: 28278635.

P. Hondelmann, C. Paul, M. Schreiner, R. Meyhöfer, Importance of Antixenosis and antibiosis resistance to the cabbage whitefly (Aleyrodes proletella) in brussels sprout cultivars, Insects 11 (1) (2020) 56 Jan 17..

V. Verma, P. Ravindran, P.P. Kumar, Plant hormone-mediated regulation of stress responses, BMC Plant Biol 16 (2016) 86 Apr 14.

Endophytes, a Potential Source of Bioactive Compounds to Curtail the Formation–Accumulation of Advanced Glycation End Products: A Review Lory Sthephany Rochín-Hernández,1 Lory Jhenifer Rochín-Hernández,2 and Luis Bernardo Flores-Cotera 2022 Jul; 27(14): 4469.

Yadav G, Meena M. Bioprospecting of endophytes in medicinal plants of Thar Desert: An attractive resource for biopharmaceuticals. Biotechnol Rep (Amst). 2021 May 24;30:e00629. doi: 10.1016/j.btre.2021.e00629. PMID: 34136363; PMCID: PMC8182382.

Kurissery S., Shaw L.K., Kanavillil N. Intellectual, Scientific, and Educational Influences on Sustainability Research. IGI Global; 2019. A historic perspective of endophytes in vascular plants and their role in environmental sustainability; pp. 14–45.

Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP. A Friendly Relationship between Endophytic Fungi and Medicinal Plants: A Systematic Review. Front Microbiol. 2016 Jun 9;7:906. doi: 10.3389/fmicb.2016.00906. PMID: 27375610; PMCID: PMC4899461.

Endophytic fungi: an overview on biotechnological and agronomic potential Fungos endofíticos: F. P. N. Cruza , P. T. Lacavaa and C. P. Sousaa November 24, 2021 – Accepted: April 8, 2022| https://doi.org/10.1590/1519-6984.258557 1/9

Kharwar R.N., Mishra A., Sharma V.K., Gond S.K., Verma S.K., Kumar A., Kumar J., Singh D.K., Goutam J. Microbial Diversity and Biotechnology in Food Security. Springer; New Delhi: 2014. Diversity and biopotential of endophytic fungal flora isolated from eight medicinal plants of Uttar Pradesh, India; pp. 23–39.

Wu B., Hussain M., Zhang W., Stadler M., Liu X., Xiang M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology. 2019;10:127–140. doi: 10.1080/21501203.2019.1614106.

Li B, Webster TJ. 2018. Bacteria antibiotic resistance: New challenges and opportunities for implantassociated orthopedic infections. J. Orthop. Res. 36(1):22–32. doi:10.1002/jor.23656.

Silver LL. 2011. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24(1):71–109. doi:10.1128/CMR.00030¬10.

Monowar, T., Rahman, M., Bhore, S. J., Raju, G., and Sathasivam, K. V. (2018). Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules 23, 3220. doi: 10.3390/molecules23123220 .

Antimicrobial activity of endophytic fungi from olive tree leaves Cynthia Malhadas1 • Ricardo Malheiro • José Alberto Pereira • Paula Guedes de Pinho • Paula Baptista1 Received: 4 December 2016 / Accepted: 18 January 2017 / Published online: 6 February 2017 World J Microbiol Biotechnol (2017) 33:46 DOI 10.1007/s11274-017-2216-7

Arora P, Wani ZA, Nalli Y, Ali A, Riyaz-Ul-Hassan S. Antimicrobial Potential of Thiodiketopiperazine Derivatives Produced by Phoma sp., an Endophyte of Glycyrrhiza glabra Linn. Microb Ecol. 2016 Nov;72(4):802-812. doi: 10.1007/s00248-016-0805-x. Epub 2016 Jun 29. PMID: 27357141.

S. Kumar, N. Kaushik, R. Edrada-Ebel, R. Ebel, and P. Proksch, “Isolation, characterization, and bioactivity of endophytic fungi of Tylophora indica,” World Journal of Microbiology and Biotechnology, vol. 27, no. 3, pp. 571–577, 2011.

Manganyi, M.; Regnier, T.; Kumar, A.; Bezuidenhout, C.; Ateba, C. Biodiversity and antibacterial screening of endophytic fungi isolated from Pelargonium sidoides. South Afr. J. Bot. 2018, 116, 192–199

Shi, Xiao-Shan and Yinping, Song and Meng, Ling-Hong and Yang, Sui-Qun and Wang, Dun-Jia and Zhou, Xing-Wang and Ji, Nai-Yun and Wang, Bin-Gui and Li, Xiaoming},2021,02.pages 213Isolation and Characterization of Antibacterial Carotane Sesquiterpenes from Artemisia argyi Associated Endophytic Trichoderma virens QA-8.Antibiotics,doi .10.3390/antibiotics10020213

Mogana, R.; Adhikari, A.; Tzar, M.; Ramliza, R.; Wiart, C. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complementary Med. Ther. 2020, 20, 55

Ramos H.P., Braun G.H., Pupo M.T., Said S. Antimicrobial activity from endophytic fungi Arthrinium state of Apiospora montagnei Sacc. and Papulaspora immersa. Braz. Arch. Biol. Techn. 2010;53:629–632. doi: 10.1590/S1516-89132010000300017.

Pretsch A., Nagl M., Schwendinger K., Kreiseder B., Wiederstein M., Pretsch D., Genov M., Hollaus R., Zinssmeister D., Debbab A. Antimicrobial and anti-inflammatory activities of endophytic fungi Talaromyces wortmannii extracts against acne-inducing bacteria. PLoS ONE. 2014;9:e97929. doi: 10.1371/journal.pone.0097929.

Tonial F., Maia B.H., Gomes-Figueiredo J.A., Sobottka A.M., Bertol C.D., Nepel A., Savi D.C., Vicente V.A., Gomes R.R., Glienke C. Influence of culturing conditions on bioprospecting and the antimicrobial potential of endophytic fungi from Schinus terebinthifolius. Curr. Microbiol. 2016;72:173–183. doi: 10.1007/s00284-015-0929-0.

Zhang X., Xu Z., Ma J., Zhou D., Xu J. Phylogenetic Diversity, Antimicrobial and Antioxidant Potential and Identification of Bioactive Compounds from Culturable Endophytic Fungi Associated with Mangrove Bruguiera sexangula (Lour.) Poir. Curr. Microbiol. 2021;78:479–489. doi: 10.1007/s00284-020-02314-7.

Endophytic Fungi: A Potential Source of Bioactive Compounds Gaurav Kumar1 *, Priyanka Chandra2 and Madhu Choudhary Chem Sci Rev Lett 2017, 6(24), 2373-2381

Bhagat, J., Kaur A., Sharma M., Saxena A.K. and Chadha B.S. 2012. Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World Journal of Microbiology and Biotechnology, 28(3):963–971.

Porras-Alfaro, A.; Bayman, P. Hidden fungi, emergent properties: Endophytes and microbiomes. Annu. Rev. Phytopathol. 2011, 49, 291–315.

Xu, K.; Li, X.Q.; Zhao, D.L.; Zhang, P. Antifungal secondary metabolites produced by the fungal endophytes: Chemical diversity and potential use in the development of biopesticides. Front. Microbiol. 2021,

Pasrija, P.; Girdhar, M.; Kumar, M.; Arora, S.; Katyal, A. Endophytes: An unexplored treasure to combat Multidrug resistance. Phytomed. Plus 2022, 2, 100249.

Digra, S.; Nonzom, S. An insight into endophytic antimicrobial compounds: An updated analysis. Plant Biotechnol. Rep. 2023, 1–31

Mazumder, K.; Ruma, Y.N.; Akter, R.; Aktar, A.; Hossain, M.M.; Shahina, Z.; Mazumdar, S.; Kerr, P.G. Identification of bioactive metabolites and evaluation of in vitro anti-inflammatory and in vivo antinociceptive and antiarthritic activities of endophyte fungi isolated from Elaeocarpus floribundus blume. J. Ethnopharmacol. 2021, 273, 113975.

Meshram, V.; Saxena, S.; Paul, K. Xylarinase: A novel clot busting enzyme from an endophytic fungus Xylaria curt. J. Enzym. Inhib. Med. Ch. 2016, 31, 1502–1511. [

Cruz, J.S.; Silva, C.A.D.; Hamerski, L. Natural products from endophytic fungi associated with Rubiaceae species. J. Fungi 2020, 6, 128.

Zilla, M.K.; Qadri, M.; Pathania, A.S.; Strobel, G.A.; Nalli, Y.; Kumar, S.; Guru, S.K.; Bhushan, S.; Singh, S.K.; Vishwakarma, R.A.; et al. Bioactive metabolites from an endophytic Cryptosporiopsis sp. inhabiting Clidemia hirta. Phytochemistry 2013, 95, 291–297.

Downloads

Published

2023-09-21

How to Cite

Ubaydullaeva Sh. X. (2023). Antimicrobial Treasures: Endophytic Fungi in Medicinal Plants. World Journal of Agriculture and Urbanization, 2(9), 42–50. https://doi.org/10.51699/wjau.v2i9.100

Issue

Section

Articles