The Efficacy of Bacillus Thuringiensis (Bt) as Biopesticide Against Fall Armyworm in Sugarcane Whorl
DOI:
https://doi.org/10.51699/wjau.v1i1.18Keywords:
Bacillus thuringiensis, biopesticides, control, fall armyworm, sugarcane, treatmentAbstract
Fall armyworm is one of the most destructive leaf feeders in sugarcane whorl. This study evaluated the efficacy of different application rates of Bacillus thuringiensis (Bt) as pest control against fall armyworm. The study used a total of ninety (90) fall armyworms collected from the Municipality of La Castellana, while Bacillus thuringiensis (Bt) was purchased from Bacolod City. Eighteen units of liter plastic containers were used to house the fall armyworms, wherein each container had five larvae. The study was laid out in Complete Randomized Design (CRD). It consisted of six (6) treatments with three (3) replications. The treatments were as follows: T1 – Control; T2– 10 grams Bt; T3 – 20 grams Bt; T4 – 30 grams Bt; T5 – 40 grams Bt; and T6-50 grams Bt. Data gathered were computed and subjected to Analysis of Variance (ANOVA) in CRD using STAR 2.0.1, and Least Significant Difference (LSD) was used to determine significant differences among treatments. Statistical analysis revealed significant differences among treatments on the mortality rate of fall armyworm as subjected to different application rates of Bt treatments, only on the 13th day of observation (F = 4.00, P = 0.0228). Results showed a complete mortality rate of fall armyworms under all application rates of Bt treatments, except only those fall armyworms under control (T1), which only got an average mortality rate of 86.67 percent, significantly inferior by 13.37 percent. Moreover, it was found that application rates of 10 grams and 40 grams (T2 and T5) of Bt treatments early obtained a complete mortality rate of fall armyworm at Day 5 compared to other treatments. On the other hand, untreated (T1) fall armyworm attained a 100 percent mortality rate on Day 16 of observation.
References
Akeme, C. N., Ngosong, C., Sumbele, S. A., Aslan, A., Tening, A. S., Krah, C. Y., ... & Nambangia, O. J. (2021, November). Different controlling methods of fall armyworm (Spodoptera frugiperda) in maize farms of small-scale producers in Cameroon. In IOP Conference Series: Earth and Environmental Science (Vol. 911, No. 1, p. 012053). IOP Publishing.
Barros, M. V., Salvador, R., de Francisco, A. C., & Piekarski, C. M. (2020). Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renewable and Sustainable Energy Reviews, 131, 109958.
Berón, C. M., & Salerno, G. L. (2006). Characterization of Bacillus thuringiensis isolates from Argentina that are potentially useful in insect pest control. BioControl, 51(6), 779-794.
CABI. (2017). Spodoptera frugiperda (fall army worm) invasive species compendium. Retrieved from http://www.cabi.org/isc/datasheet/29810
CABI (2022), Fall armyworm portal, Retrieved:https://www.cabi.org/isc/fallarmyworm
Caccia, S., Astarita, F., Barra, E., Di Lelio, I., Varricchio, P., & Pennacchio, F. (2020). Enhancement of Bacillus thuringiensis toxicity by feeding Spodoptera littoralis larvae with bacteria expressing immune suppressive dsRNA. Journal of Pest Science, 93(1), 303-314.
Caccia, S., Di Lelio, I., La Storia, A., Marinelli, A., Varricchio, P., Franzetti, E., ... & Pennacchio, F. (2016). Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proceedings of the National Academy of Sciences, 113(34), 9486-9491.
Chormule, A., Shejawal, N., Sharanabasappa, C. M., Asokan, R., Swamy, H. M., & Studies, Z. (2019). First report of the fall Armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. J. Entomol. Zool. Stud, 7(1), 114-117.
Cock, M. J., Beseh, P. K., Buddie, A. G., Cafá, G., & Crozier, J. (2017). Molecular methods to detect Spodoptera frugiperda in Ghana, and implications for monitoring the spread of invasive species in developing countries. Scientific reports, 7(1), 1-
FAO (2019), FAO scales up the fight against Fall Armyworm. https://www.fao.org/news/story/en/item/1253916/icode/
Gutiérrez-Moreno, R., Mota-Sanchez, D., Blanco, C. A., Whalon, M. E., Terán-Santofimio, H., Rodriguez-Maciel, J. C., & DiFonzo, C. (2019). Field-evolved resistance of the fall armyworm (Lepidoptera: Noctuidae) to synthetic insecticides in Puerto Rico and Mexico. Journal of economic entomology, 112(2), 792-802.
Gutierrez-Moreno, R., Mota-Sanchez, D., Blanco, C. A., Chandrasena, D., Difonzo, C., Conner, J., ... & Wise, J. (2020). Susceptibility of fall armyworms (Spodoptera frugiperda je) from mexico and puerto rico to Bt proteins. Insects, 11(12), 831.
Haase, S., Sciocco-Cap, A., & Romanowski, V. (2015). Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses, 7(5), 2230-2267.
Jacobs, A., Van Vuuren, A., & Rong, I. H. (2018). Characterisation of the fall armyworm (Spodoptera frugiperda JE Smith)(Lepidoptera: Noctuidae) from South Africa. African Entomology, 26(1), 45-49.
Jamieson, William B. Individual Based Model to Simulate the Evolution of Insecticide Resistance. Diss. The University of Nebraska-Lincoln, 2019.
Legwaila, M. M., Munthali, D. C., Kwerepe, B. C., & Obopile, M. (2015). Efficacy of Bacillus thuringiensis (var. kurstaki) against diamondback moth (Plutella xylostella L.) eggs and larvae on cabbage under semi-controlled greenhouse conditions. International Journal of Insect Science, 7, IJIS-S23637.
Li, Y. C., Li, Z. W., Lin, W. W., Jiang, Y. H., Weng, B. Q., & Lin, W. X. (2018). Effects of biochar and sheep manure on rhizospheric soil microbial community in continuous ratooning tea orchards. Ying yong sheng tai xue bao= The journal of applied ecology, 29(4), 1273-1282.
Montezano, D. G., Sosa-Gómez, D. R., Specht, A., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. D., ... & Hunt, T. E. (2018). Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African entomology, 26(2), 286-300.
Mullaney, Emma Gaalaas. "Bacillus thuringiensis". Encyclopedia Britannica, 27 Mar. 2011, https://www.britannica.com/science/Bacillus-thuringiensis. Accessed 9 June 2022.
Nagoshi, R. N., Goergen, G., Tounou, K. A., Agboka, K., Koffi, D., & Meagher, R. L. (2018). Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Scientific reports, 8(1), 1-10.
Nagoshi,R. N., Goergen, G., Agbeko, K. T., Agboka, K., Koffi, D., Meagher, R. L., 2018. Analysis of strain distribution, migratory potential, and invasion history of fall armyworm populations in northern Sub-Saharan Africa. Scientific Reports, 8, 3710. doi: doi:10.1038/s41598-018-21954-1
Navasero, M. V., Navasero, M. M., Burgonio, G. A. S., Ardez, K. P., Ebuenga, M. D., Beltran, M. J. B., ... & Aquino, M. F. G. M. (2019). Detection of the fall armyworm, Spodoptera frugiperda (JE Smith)(Lepidoptera: Noctuidae) using larval morphological characters, and observations on its current local distribution in the Philippines. Philipp. Entomol, 33(2), 171-184.
Otim, M. H., Tay, W. T., Walsh, T. K., Kanyesigye, D., Adumo, S., Abongosi, J., ... & Agona, A. (2018). Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda. PloS one, 13(4), e0194571.
Philippine Statistics Authority, 2021. Retrieved by: https://psa.gov.ph/non-food/sugarcane
Rutala, W., & Weber, D. J. (2017). Guideline for Disinfection and Sterilization in Healthcare Facilities. Centers for Disease Control; 2008.
Salehi Jouzani, G., Abbasalizadeh, S., Moradali, M. F., & Morsali, H. (2018). Development of a Cost Effective Bioprocess for Prod uction of an Iranian Anti-Coleoptera Bacillus thuringiensis Strain.
Saxe, L. (1983). The effectiveness and costs of alcoholism treatment. Congress of the US, Office of Technology Assessment.Senthil-Nathan, S. (2015). A review of biopesticides and their mode of action against insect pests. Environmental sustainability, 49-63.
Shelton, A. M., Paranjape, V., Hossain, M. J., Hautea, D., ZH, M., Prodhan, M. A. H., ... & Vijayaraghavan, V. (2021). Bringing Bt eggplant to resource-poor farmers in Bangladesh and the Philippines. Genetically Modified Crops in Asia Pacific, 119
Song, X. P., Liang, Y. J., Zhang, X. Q., Qin, Z. Q., Wei, J. J., Li, Y. R., & Wu, J. M. (2020). Intrusion of fall armyworm (Spodoptera frugiperda) in sugarcane and its control by drone in China. Sugar Tech, 22(4), 734-737.
Srinivasan, R., Sevgan, S., Ekesi, S., & Tamò, M. (2019). Biopesticide based sustainable pest management for safer production of vegetable legumes and brassicas in Asia and Africa. Pest management science, 75(9), 2446-2454.
Xiuqin, C. H. E. N., Qiquan, L. I. U., Xinhu, T. I. A. N., Yuxian, H. E., Liangmiao, Q. I. U., & Zhixiong, Z. H. A. N. (2021). Progress in Biological Control of Spodoptera frugiperda. 福建农业学报, 36(8), 981-988.
Downloads
Published
How to Cite
Issue
Section
License
The work simultaneously licensed under a Creative Commons Attribution 4.0 International License
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.